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Abstract
In this work, we assess how pre-training strategy affects deep learning performance for the task of distinguishing false-recall from
malignancy and normal (benign) findings in digital mammography images. A cohort of 1303 breast cancer screening patients
(4935 digital mammogram images in total) was retrospectively analyzed as the target dataset for this study. We assessed six
different convolutional neural network model structures utilizing four different imaging datasets (total > 1.4 million images
(including ImageNet); medical images different in terms of scale, modality, organ, and source) for pre-training on six classifi-
cation tasks to assess how the performance of CNN models varies based on training strategy. Representative pre-training
strategies included transfer learning with medical and non-medical datasets, layer freezing, varied network structure, and
multi-view input for both binary and triple-class classification of mammogram images. The area under the receiver operating
characteristic curve (AUC) was used as the model performance metric. The best performing model out of all experimental
settings was an AlexNet model incrementally pre-trained on ImageNet and a large Breast Density dataset. The AUC for the
six classification tasks using this model ranged from 0.68 to 0.77. In the case of distinguishing recalled-benign mammograms
from others, four out of five pre-training strategies tested produced significant performance differences from the baseline model.
This study suggests that pre-training strategy influences significant performance differences, especially in the case of
distinguishing recalled- benign from malignant and benign screening patients.
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Background

Digital mammography is the primary clinical imaging exam
for early-stage breast cancer screening in the general popula-
tion [1]. The effectiveness of digital mammography screening
for early detection and mortality reduction is well known, but

as with any form of medical imaging, it is an imperfect mo-
dality. Serious challenges still exist in the distinction of benign
from malignant lesions and in the reduction of false-recall [2].
False-recall refers to the situation when a woman is recom-
mended for additional imaging or biopsy but the lesion is
subsequently proven benign. The false-recall rate for screen-
ing mammography is alarmingly high. Over a 10-year period
of annual screening, more than half of women will receive at
least one false-positive recall [3]. Such high false-recall rates
result in a large number of unnecessary and possibly invasive
follow-up tests, inflicting psychological harm on the patient
[4]. Therefore, improving the distinction among malignant,
benign, and false-recall digital mammograms is a clinically
significant task. So significant, in fact, that the breast cancer
surveillance consortium has called for efforts to develop ad-
vanced technology to reduce false-positive rates in screening
mammography [5].

Deep learning convolutional neural network (CNN)-based
models have recently shown encouraging results on a number
of breast imaging studies [6–8]. Specifically for the task of
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distinguishing false-recall and malignancy from benign find-
ings in digital mammograms, a recent study has shown prom-
ising performance using deep learning [9]. The study indicates
potential for pre-training, but the scope concerning pre-
training strategy was limited. To further investigate the utility
of such a CNNmodel for clinical applications, it is imperative
to assess how performance metrics react to varying model
conditions. When developing a deep learning model, there
are a multitude of decisions to be made before the network
is even trained [10], including the following:

& Network structure: There are a number of popular struc-
tures, like AlexNet or residual networks. Different struc-
tures provide characteristics more suitable to some classi-
fication tasks than others.

& Transfer learning datasets: Transfer learning involves
using pre-trained model parameters as a starting point for
natural image computer vision tasks. Previous work has
shown the ability of transfer learning to boost performance
on medical image tasks [11].

& Layer freezing: Layers of a network can be “frozen” dur-
ing fine-tuning so that weights are not updated. This meth-
od may preserve some knowledge from early layers of the
network that learn more generic features.

& Incremental training: Incremental training begins by ini-
tializing a network via a pre-trained model’s weights and
sequentially training the network using one or more
datasets before fine-tuning to the target task.

& Multi-view input: Medical images, like mammograms, of-
ten have multi-view representation. The complementary
nature of multi-view data can be harnessed by combining
them into a single input representation.

In this study, we investigated the effects of training strategy
on CNN-based models for distinguishing malignancy and
false-recall from normal (benign) findings. This study repre-
sents an in-depth analysis of deep learning for the clinical task
of classifying mammography images. Specifically, we
assessed six different model structures utilizing four different
pre-training datasets on six classification tasks to determine
how the performance of deep learning models varies based on
training strategy.

Methods

Study Cohorts and Datasets

This was an Institutional Review Board (IRB)-approved ret-
rospective study and informed consent from patients was
waived due to the retrospective nature. Our main study cohort
included 1303 breast cancer screening patients who
underwent standard mammography screening from 2007 to

2014; a total of 4935 digital mammogram images of this co-
hort constituted the “target dataset” for assessing model clas-
sification effects. Our study also included four “pre-training
datasets” for pre-training deep learning models. The four
datasets are comprised of 1.3 million natural images, 9648
film mammogram images of 2412 patients, 108,948 X-ray
images from more than 30,000 patients, and 22,000 digital
mammogram images from 1427 patients. Our main cohort
was previously reported [9, 12], and the four pre-training
datasets were publicly available or available from the litera-
ture [13–16]. Different from a clinical study, the focus of this
study is a technical evaluation of deep learning, where
employing previously exposed datasets is common.

More specifically, the main study cohort consisted of three
sub-cohorts: 552 patients were evaluated as negative (includ-
ing benign findings), 376 patients were recalled and eventual-
ly determined to be benign based on pathology (referred to as
recalled-benign in our experiments), and 375 patients were
biopsy-proven positive for breast cancer malignancy. A pa-
tient case typically contains a single patient exam with the
standard four screening mammography views including left
and right breast with craniocaudal (CC) and mediolateral
oblique (MLO) views. Images were acquired from Hologic
Lorad Selenia machines with a bit depth of 12. Three catego-
ries of images were assembled corresponding to the three sub-
cohorts (total 4935 images). Malignant images were taken
from patients that were determined to have breast cancer based
on pathology. Only cancer-affected breast images were used.
Benign images were taken from patients whowere determined
to be cancer free after at least a 1-year follow-up period.
Recalled-benign images were taken from patients who were
recalled based on the screening mammography exam but were
eventually determined benign by pathology. A breakdown of
the patient and image numbers associated with the main study
cohort is shown in Table 1.

Pre-training Datasets

The four datasets used for pre-training are described in Fig. 1.
These datasets are ranked from least-to-most related to the
target dataset. Following are pre-training datasets
descriptions:

Table 1 Number of patients and mammogram images per category in
the target dataset

Category Number of patients Number of images

Benign 552 2391

Malignant 375 917

Recalled-benign 376 1627

Total 1303 4935
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ImageNet

The ImageNet dataset is a natural-image dataset consisting of
1.3 million labeled images of 1000 natural objects and animal
categories [13].

ChestX-Ray8 Dataset

The ChestX-Ray8 dataset consists of 108,948 frontal-view X-
ray images from more than 30,000 patients with eight disease
labels [14]. All images were used in our experiments by for-
mulating a binary classification of images positive for infiltra-
tion versus all others (infiltration-negative), as this task pro-
vides the most balanced classes for training.

Digital Database of Screening Mammography Dataset

The digital database of screening mammography (DDSM)
dataset contains 9648 digitized images of film mammograms
from 2412 patient cases [15] with normal (benign), malignant,
and benign (recalled but determined benign by biopsy) labels.
Images were segmented to outline the whole-breast region as
input for the models. Note that while filmmammography is no
longer clinically useful, this dataset has been shown useful for
pre-training of FFDM-related deep learning models [9].

Breast Density Dataset

The Breast Density dataset was created to assess four qualita-
tive breast imaging and reporting data system (BI-RADS)
breast density categories. This dataset consists of 22,000 neg-
ative full-field digital mammograms from 1427 patients [16].

Classification Tasks and Pre-training Strategies

We designed six experiments to assess pre-training for each of
the following classification tasks: each possible binary com-
bination, malignant vs. benign plus recalled-benign, and
recalled-benign vs. benign plus malignant.

Experiment 1

As a baseline for pre-training strategy comparison,
Experiment 1 models were AlexNet models [17] incremental-
ly trained (pre-trained in sequence) first on ImageNet and
subsequently on the DDSM dataset with a classification task
of benign vs. malignant before being fine tuned to the target
dataset. This experimental setup was chosen as a baseline
since a previous study [9] has already shown that this pre-
training strategy outperformed the setting of training from
scratch.

Experiment 2

Experiment 2 models, also AlexNet models, were trained in
the same fashion as experiment 1 except layers “Conv1” and
“Conv2” were frozen while fine tuning to the target dataset.

Experiment 3

Experiment 3 AlexNet models tested a different dataset for
incremental pre-training by incrementally training first on
ImageNet and subsequently on the breast density dataset with
a classification task of scattered density vs. heterogeneously
dense before being fine tuned to the target dataset.

Experiment 4

Experiment 4 models were trained in the same fashion as
experiment 3 models with the exception of the ChestX-Ray8
dataset used for incremental training instead of the breast den-
sity dataset.

Experiment 5

Experiment 5 models replaced RGB color channel input
with MLO, CC, and MLO (for consistency) views. The
models used an AlexNet structure incrementally trained

Fig. 1 Pre-training datasets
ranked from least-to-most related
to the target FFDM dataset in
terms of organ imaged, image
modality, and classification task
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on ImageNet and the multi-view DDSM dataset before
being fine-tuned to the multi-view target dataset.

Experiment 6

Experiment 6 models tested a different network structure,
ResNet-152 [18]. The models were incrementally trained on
ImageNet and the DDSM dataset with a classification task of
benign vs. malignant before being fine tuned to the target
dataset.

The structure of all experiments is illustrated in Fig. 2.
The following preprocessing algorithm was applied to the

target dataset before being input into the CNN:

1. The DICOM images were converted to grayscale jpg
images (intensity range 0–255) and the intensity dis-
tribution of all jpg images were adjusted via histo-
gram equalization using Open CV [19]. The whole-
breast regions were segmented by LIBRA [20].

2. Images were resized to 227 × 227 to comply with the in-
put size of the pre-trained AlexNet model (i.e.,
bvlc_alexnet [21]); the input size was 224 × 224 for
ResNet-152.

3. To ensure each feature pixel has zero mean, the mean
training data was generated and subtracted from each
input.

CNN Modeling and Model Evaluation

Models in all experiments followed the same experi-
mental setup. A total of five runs were performed. For
each run, a randomly selected 10% of the overall target
dataset was selected via stratified sampling for testing.
The remaining 90% of the target dataset was used for
training and validation with a ratio of nine images to
one, respectively. Testing images do not overlap in any
run. Data was stratified to ensure that the testing and
training splits for each run had the same class distribu-
tion as the overall dataset. The validation set was used
to monitor the model during the training phase for each
run. Training was stopped when the model ceased to
increase performance on the validation set. The model
with the best performance on the validation set was
selected as the final model to be evaluated on the test-
ing set. The number of images used for testing and
training for each classification task is shown in Table 2.

CNN model parameters were fixed for all experiments:
batch size of 50 for stochastic gradient descent, weight decay
of 0.001, and momentum of 0.9. The learning rate started at
0.001 and dropped by a factor of ten every 2500 iterations.
Rectified linear units were used as the activation function.
Cross entropy loss was used for all experiments. Neither data
augmentation nor batch normalization was used in order to
best compare to previous work [9].

Fig. 2 Experimental settings of the six experiments (denoted by E1 to E6) in terms of network architecture, training strategy, pre-training datasets, and
classification tasks
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The receiver operating characteristic (ROC) curve was gen-
erated and the area under the curve (AUC) was calculated as a
metric of classification performance. For triple classification,
we generated a ROC curve for each binary class combination
and reported the average of the AUCs as is commonplace in
the literature [22]. Ninety-five percent confidence intervals
were computed via Delong’s method [23]. P values were cal-
culated via bootstrap method [23] for each experiment com-
pared to the experiment 1 (serving as a baseline).

Networks were implemented using the caffe platform run-
ning on a machine with the following specifications: Intel®
Core™ i7-2670QM CPU@2.20GHZ with a Titan X Geforce
GTX Graphics Processing Unit.

Results

Figure 3 compares the model performance of all experiments
on each classification task. The results are grouped by classi-
fication task for comparison of the performance of each ex-
perimental model. As illustrated in Fig. 3, the average AUC of

all experiments for all tasks were within the range of 0.54–
0.77. In general, models trained to distinguish false-recall
from malignancy or false-recall from benign images appear
to perform better than other tasks.

Table 3 shows the significance of the AUC difference be-
tween each experimental model and the baseline model, ex-
periment 1. The model that consistently performed better than
the baseline was experiment 3, though only two task differ-
ences were statistically significantly (malignant vs. recalled-
benign and recalled-benign vs. benign + malignant). Further,
experiment 3 models had the best performance out of all
models on all tasks aside from the malignant vs. benign clas-
sification task. Experiment 4 was significantly worse than the
baseline for all tasks. Experiment 5 models consistently per-
formed worse than the baseline on all tasks, with all differ-
ences statistically significant aside from the malignant vs. be-
nign + recalled-benign task. Experiment 2 models were only
significantly worse than the baseline for two tasks: malignant
vs benign + recalled-benign, and benign vs recalled-benign.
The model that had the worst performance on every task was
experiment 4. Experiment 6 models had mixed results as two

Table 2 Number of testing and training images for each classification task

Classification task Total images per
category

Testing images per category

Malignant vs. benign vs. recalled-benign

Malignant 917 91

Benign 2391 239

Recalled-benign 1627 162

Total 4935 492

Benign vs. recalled-benign

Benign 2391 239

Recalled-benign 1627 162

Total 4018 401

Malignant vs. benign

Malignant 917 91

Benign 2391 239

Total 3308 330

Malignant vs. recalled-benign

Malignant 917 91

Recalled-benign 1627 162

Total 2544 253

Malignant vs. benign + recalled-benign

Malignant 917 91

Benign + recalled-benign 4018 401

Total 4935 492

Recalled-benign vs. benign + malignant

Recalled-benign 1627 162

Benign + malignant 3308 330

Total 4935 492
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tasks were not significantly different than the baseline, two
tasks were significantly worse than the baseline, and two tasks
were significantly better than the baseline.

The models were also compared by variability of perfor-
mance on each of the five runs. The AUC of each run for each
experiment on each classification task plus the standard devi-
ation is shown in Fig. 4.

Although not directly comparable, the performance of the best
performing model (AUC range 0.69–0.77 in experiment 3) in
this study is in line with related studies. Among the best reported
results in a previous work using the same target dataset [9], the

AUC performance of the AlexNet model incrementally trained
on ImageNet then the DDSM dataset is in the range 0.68–0.83.
In a recent deep learning-based study on breast cancer risk pre-
diction using negative digital mammograms [24], the image-only
model achieves an AUC of 0.68. In terms of human perfor-
mance, not all classification tasks tested in this study have per-
formance statistics in the literature. Specifically, for binary-class
diagnosis task (malignant vs. benign), reported performance
varies (see [5, 9] for more details) but in one multicenter trial
[25], the radiologists’ average AUC was reported at 0.82. Note
that while these numbers may not directly comparable due to

Fig. 3 Average CNN model performance comparison across experiment 1, experiment 3, and experiment 4 (top plot) and across experiment 2,
experiment 5, and experiment 6 (bottom plot), grouped by classification task. Error bars depict 95% confidence intervals
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differences in specified classification tasks, data sets, and exper-
imental settings, we have put these numbers in context to inspire
insights and future research.

Discussion

We performed an evaluation study to assess CNN perfor-
mance with respect to pre-training strategy on a given

classification task. The application of deep learning to a spe-
cific classification task requires many initialization choices
including model structure and pre-training data. A compre-
hensive evaluation of the effect of these factors on CNN per-
formance is critical to gain insight into how robustly deep
learning addresses a classification task. Despite this need, re-
searchers have been using a trial-and-error approach to opti-
mize parameters in the process of building better performing
models due to lack of interpretability of deep learning. In this

Fig. 4 Individual AUC for each run (plus standard deviation from the mean) of each experiment on each classification task to show the performance
variability of the models

Table 3 Statistical significance of difference in AUC values compared to the baseline model, experiment 1

Malignant vs benign vs
recalled-benign

Benign vs
recalled-benign

Malignant vs
benign

Malignant vs
recalled-benign

Malignant vs benign +
recalled-benign

Recalled-benign vs.
benign + malignant

Experiment
1

– – – – – –

Experiment
2

0.32 < 0.01 0.96 0.09 0.02 0.53

Experiment
3

0.29 0.34 0.65 < 0.01 0.49 0.03

Experiment
4

< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Experiment
5

< 0.01 0.01 0.01 0.01 0.43 < 0.01

Experiment
6

< 0.01 0.35 < 0.01 < 0.01 0.48 < 0.01

Statistically significant results (p < 0.05) are displayed in bold
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study, we leveraged a large breast cancer screening cohort and
several pre-training datasets to assess behaviors of our CNN
models for a specific breast imaging classification.

We tested six classification tasks and the degree to which
pre-training strategy made a significant impact on perfor-
mance seems to be dependent on the classification task. Our
study focus is on the identification of recalled-benign mam-
mograms. In the case of distinguishing these images from
malignant and benign mammograms, four out of five pre-
training strategies produced significant performance differ-
ences compared to the baseline model. We consider these
tasks to be sensitive to pre-training strategy. Tasks that were
moderately sensitive to pre-training strategy include the triple
task, benign vs recalled-benign, and malignant vs benign,
each having three out of five experiments with significant
performance changes. The classic diagnosis model, malignant
vs. recalled-benign + benign, has only two out of five exper-
iments producing statistically significant differences com-
pared to the baseline.

The only experimental model that outperformed the base-
line model for all tasks (except one) was experiment 3, models
trained first on ImageNet and then on the Breast Density
dataset before being fine-tuned to the target dataset. This small
performance increase over the baseline seems intuitive based
on how the pre-training datasets were ranked from least-to-
most related to the target dataset. As the breast density dataset
is the same imaging modality (digital mammography) and
concerns the same organ (breast) as the target dataset, it is
“most similar” and thus may have pre-learned features “closer
to” ones useful for classification of the target dataset.
Conversely, it is observed in Experiment 4 that training first
on ImageNet and then on the large ChestX-Ray8 dataset sig-
nificantly decreased the AUCs across all tasks. ChestX-Ray8
is of a different modality and images a different organ, which
may explain the drop in performance. These comparisons im-
ply that different modalities and organs of interest of medical
image datasets may effect overall performance when used for
pre-training.

In terms of different CNN network structure, we test-
ed both AlexNet and ResNet-152. The ResNet-152
model (experiment 6) significantly outperformed the
AlexNet model trained with the same training strategies
and datasets (experiment 1), for the malignant vs benign
and recalled-benign vs. benign + malignant tasks. The
ResNet-152 model performed significantly worse than
the AlexNet model for the triple task and the malignant
vs recalled-benign task. The remaining two tasks had no
significant differences in performance. For these rea-
sons, we consider the AUCs for the two structures over-
all comparable. Although AlexNet has a simpler struc-
ture than ResNet-152, it may still be possible to achieve
comparable performance to other popular CNNs, as
made evident by our classification tasks and data. As

this observation is also likely data and classification
task dependent, the model structure should be tested
on a case-by-case basis to determine which CNN model
is optimal for a given scenario.

Our study has some limitations. First, our target
dataset comes from a single institution. To be clinically
useful, models must also be validated in the context of
generalizability to external independent cohorts that cov-
er several institutions, machines, and imaging protocols.
Second, we were not realistically able to test all possi-
ble combinations of model structure and pre-training
strategy. While our selected strategies are typical, we
acknowledge that there are other interrelated factors
meriting further assessment. Third, efforts on designing
advanced networks for multi-view input are important to
pursue. As shown in experiment 5, multi-view pre-train-
ing using the DDSM dataset significantly decreased the
AUCs in comparison to single-view for all tasks (except
one). This could be due to several reasons, including
the fact that the training samples were reduced by half
as compared to using the views independently.
However, the format in which we combine the views
may not optimally capture collaborative features.

Conclusion

In summary, we have performed an extensive technical anal-
ysis of deep learning on digital mammograms to distinguish
false-recall frommalignant and benign findings.We evaluated
several pre-training strategies and found that the influence
depended on the classification task. In particular, pre-
training strategy influences significant performance differ-
ences in distinguishing recalled-benign images from others.
Thus, advanced pre-training strategies are important to pursue
for deep learning-based classification tasks.
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